
CORBA Firewall Traversal 1
Note – Changes for resolving issue 7168 are in Red. Changes for resolving issue 7167
are in Magenta. New Tag values as assigned by OMG in Green.

1.1 Overview
The overall goal of firewall traversal is to provide better accessibility to CORBA
application servers when there is a firewall separating a client from a server. In this
context, "better" means that client-firewall-server communication can be enabled and
controlled more easily for a broader range of circumstances. Currently, ORBs and
firewalls have a limited form of "peaceful co-existence" that provides satisfactory
functionality only in some cases.

There are two reasons why CORBA poses a unique problem for firewalls: server
location transparency and the peer-based communication model. One of the primary
benefits of CORBA is that a client does not need to know the exact location of an
object to invoke on it. Therefore the server can be relocated or the object can be
provided by a new server without changing any client-side information. This location
transparency introduces a problem when a firewall is used to protect the server,
because normally a firewall provides protection by only allowing inbound connections
to a small number of well-known addresses. Therefore, the server location must be
known by the firewall a priori.

The CORBA peer-based communication model also causes a problem when
communicating through firewalls. Traditional internet applications use a client-server
model where the number of servers is relatively small, and the servers are under the
administrative control of a single organization. In CORBA, any host could act as a
client or a server, so the number of “servers” is relatively high and the “servers” are
under the administrative control of multiple organizations. The problem with a large
number of potential servers is two-fold. First, Network Address Translation (NAT)1 is
deployed by many organizations to extend the available address space and to hide the
 CORBA Firewall Traversal 1-1

topology of the internal network from the outside. In the traditional client-server
model, the servers use actual routable addresses (non-NAT) for the publicly available
servers. But if a large number of hosts could potentially be servers, then this solution
eliminates the effectiveness of NAT. Second, firewalls can easily be configured with a
policy to control traffic to a small number of servers and deny access to all other hosts.
If the number of servers becomes large, then the firewall policy becomes both
unmanageable and decreasingly effective.

This chapter identifies the features necessary for CORBA communication to be more
easily handled by firewalls. It also provides information on how current firewall
techniques can be used to control CORBA communication. This information
illustrates the benefits of current techniques, and also the limitations. The need to
overcome these limitations is the impetus for this specification.

Interoperable CORBA communication occurs via the GIOP protocol, which on the
Internet is implemented by the IIOP protocol. Because firewalls control IP networking
communication, and because ORBs communicate via IIOP, this specification is
concerned with various aspects of how firewalls handle the IIOP protocol. It is
important to note that there is nothing particularly problematic about IIOP as an
Internet protocol in terms of firewall processing. In fact, this specification does not
modify IIOP in any way. Rather, this specification adds new data elements to CORBA
(for example, in IORs) that provide clients, firewalls, and servers the information
needed for flexible, efficient, controlled firewall traversal. In fact, if CORBA servers
use a single IP address that is routable by all of the clients, i.e. the address of the
server is unambiguous within the clients’ enclaves, then no additional firewall features
need to be used for basic invocations on CORBA servers.

1.2 Firewall Principles
In a CORBA environment, firewalls are used to protect objects from clients in other
networks or sub-networks. A firewall will either permit access from another network
to a particular object, or it will prevent it. Access through a firewall may be permitted
at various levels of granularity. For example, access could be permitted to some objects
behind the firewall based on network address, or access could be restricted to certain
operations on particular objects.

An enclave is a group of objects protected by a firewall. The firewall protects the
enclave's network (or subnet) by separating it from other enclaves and/or the Internet
at large. The separation is the result of the fact that all communication between the
enclave and the outside must pass through the enclave’s firewall (or one of its
firewalls, if there are several). Firewalls have two distinct duties: inbound protection
and outbound protection. Inbound protections are used to control external access to
internal resources. Outbound protections are used to limit the outside resources that
can be accessed from within the enclave.

1. NAT allows an organization to use a private address space for internal use, and
the firewall translates those addresses into globally unique addresses when cli-
ents communicate over the Internet. This allows many clients within an organi-
zation to share a few unique addresses.
1-2 CORBA Firewall Traversal

Both aspects of firewall functionality are important for CORBA. A firewall's
outbound protection functions should allow inside CORBA application clients and
objects to initiate communication with objects outside the enclave. A firewall's
inbound protection functions should prevent communication between outside
clients/objects and inside objects that the outsiders should not be permitted to
communicate with. Without a firewall's outbound protection, clients could access any
resources. Without a firewall's inbound protection, all of the enclave's resources are
unprotected from the outside world. Figure 2-1 illustrates an enclave with two
inbound firewalls, and one outbound firewall. Note that although the firewalls are
logically and functionally separate, they may share the same physical hardware, or
even share the same address space.

Enclaves can be nested, such that an enclave may contain other enclaves in a
hierarchical manner. This enables organizations to decentralize firewall access and
have different access policies. For example, an engineering department prevents the
finance department of the same company from accessing design documents. When
enclaves are nested, a sequence of firewalls has to be traversed. A firewall protecting
the outer enclave is called either an outermost inbound firewall or an outermost
outbound firewall, depending on the direction of the invocation. The outermost
inbound firewall represents an entry point into an organization. Figure 2-2 illustrates a
hierarchical nesting of enclaves. The outermost “Company XYZ” enclave contains two
sub-enclaves, “Finance” and “R&D”. The “R&D” enclave further contains the
“Research” enclave.

1.3 Types of Firewall
Broadly, there are two types of firewall: transport level and application level. A
transport level firewall allows resources to be accessed via any application level
protocols. Such firewalls do not understand the type of application protocol being
used, rather access is based purely on addressing information in the header of transport

Enclave
InboundInbound

Outbound

Figure 2-1 An enclave with multiple inbound and outbound firewalls.
CORBA Firewall Traversal 1-3

packets. Hence, access decisions are based on the source and destination of a message
and not on the resource being accessed. Typically access control is performed during
connection setup, and if the connection setup is successful, any application traffic may
pass over the connection. A TCP firewall, for example allows access to FTP, HTTP, or
IIOP resources, where access control is based on which hosts and ports traffic is
travelling between.

Application level firewalls on the other hand are restricted to a particular application
level protocol, such as IIOP or HTTP. As a result, access decisions can be based on
both transport addressing information and on specific resources known to the
application level protocol. For example, if there are two objects that can be accessed
via the same host and port, it is possible for the firewall to deny invocations being sent
to one object but to allow them for the other. This type of control requires monitoring
the traffic after the connection has been established, and hence requires the firewall to
understand the application level protocol.

1.3.1 TCP Firewalls

A TCP firewall is a very simple transport level firewall. It performs access control
decisions based on address information in TCP headers. For ORB interoperability, TCP
firewalls provide the simplest means to protect resources, but at the coarsest level
of granularity i.e. host based control.

A TCP firewall works on a simple address mapping scheme: a connection request
received on a certain port of the firewall, results in the firewall establishing a
connection to a particular host/port. Once the two connections have been established,
application level traffic can be sent from source to destination via the firewall. From an
ORB perspective, GIOP messages will travel through the firewall uninterrupted i.e.
ORB protocols are inconsequential to a TCP firewall.

Company XYZ

Finance

R & D

Research
Outbound

Inbound

Figure 2-2 A hierarchical set of enclaves.
1-4 CORBA Firewall Traversal

The firewall can determine access control information by looking at the source address
field in the TCP header, and make a decision as to whether that source host can
connect through to the destination. A TCP firewall must have prior knowledge of the
source to destination mappings, and conceptually has a configuration table containing
tuples of the form: (<inhost, inport>, <outhost, outport>). When a connection request
from <inhost, inport> is received, assuming the firewall allows connections from that
particular client, a connection is set up to <outhost, outport>.

A simple form of ORB interoperability through TCP firewalls can be achieved without
any additions to CORBA. Assuming a server is in an enclave protected by a TCP
firewall, the server can be configured to know about this firewall and may substitute
the host and port address of the server with the host and port address of the firewall in
any IORs issued outside the enclave (how this is done is an implementation issue for
the ORB vendor). Hence a client outside the enclave will receive an IOR that contains
the address of the firewall and not the server. The client will therefore send GIOP
messages to the firewall (which are forwarded to the server) thinking that the object is
actually on the firewall. This scheme can be used independently of the other
mechanisms described in this chapter, since it is completely transparent to clients.
Often TCP firewalls are used in more complex configurations, where it is not feasible
to use this scheme. In these cases the mechanisms described in this chapter can be
used.

Since TCP/IP services typically use a port per service, it is common for TCP services
to be identified by the port number used for the server. For example, SMTP mail is
delivered on port 25, X11 traffic on port 6000, etc. As a result, most existing firewalls
base their low-level access control decisions on the port used. ORB interoperability
through TCP firewalls is currently impeded as there is no well-known IIOP port,
therefore we define a recommended well-known IIOP port and a well-known
IIOP/TLS port. Client enclaves with TCP firewalls will then be able to permit access
to IIOP servers by enabling access to this port through their firewall. These ports are
not mandatory, and IIOP servers can be set up to offer service through other ports if
that is desired. However the ports serve as a basic guideline for server and firewall
deployment, and allow client enclaves to immediately identify or filter the traffic as
IIOP without requiring protocol analysis.

The well-known IIOP port is 683, and the well-known IIOP/TLS port is 684.

1.3.2 Application Proxy

An application proxy is an application level firewall that understands GIOP messages
and the specific transport level inter-ORB Protocol supported e.g. IIOP. An
application proxy firewall, or just application proxy for short, relays GIOP messages
between clients and Objects. It may base access control decisions on information in the
GIOP packet. For example, it could block requests to an object with a particular
object_key, or it could block requests for a particular operation on an object.

To establish a connection to a server, a client first sets up a connection to the proxy. If
the proxy is an outbound one, the ORB is configured with the address of the proxy. If
the proxy is an inbound one, the server’s IOR should contain the address of the proxy
CORBA Firewall Traversal 1-5

service on the firewall. After a connection is established, the client interacts with the
proxy object to establish a connection to the target server. The interaction(s) required
with a proxy may be dependent on the transport mapping. Irrespective of how the
client interacts with the proxy, and assuming appropriate permissions, the proxy will
establish a connection with the server. Once this is done, the client and server may
send GIOP messages to each other, according to the normal GIOP rules.

1.4 Rationale
There are a number of variables in establishing IIOP connections through firewalls.
These variables include firewall topologies (placement of servers within networks and
subnetworks), firewall types (transport, application), use of NAT, and the desire for
secure communication. The underlying goal of the firewall traversal specification is to
provide a means for ORBs to establish a connection from client to server in a uniform
manner, regardless of these variables. Furthermore, a firewall generally maintains its
security by only executing a small amount of well-tested code. For that reason, this
specification makes it possible for a firewall to make access decisions in a
deterministic manner without complex application-level interactions (e.g. invocations
on CORBA objects) that may require an ORB implementation on the firewall.

1.5 IIOP Communication Via Firewalls

1.5.1 Firewall Traversal Overview

A server indicates that the objects it serves reside behind a firewall by placing a
TAG_FIREWALL_PATH tagged component in the IIOP profile of the IOR for that
object. The information in that tagged component enables the client to make an
invocation through the firewall that will eventually reach the server. This information
includes an ordered list of host addresses from the outermost inbound firewall to the
target server.

In order to set up a connection to the target server, the client must first send a
connection setup message to the target. This connection setup message is a
NegotiateSession message discussed in section 15.4.10 and it contains a
FIREWALL_PATH service context entry. The FIREWALL_PATH service context
contains the information provided in the TAG_FIREWALL_PATH component of the
IOR. This information allows firewalls to open up the correct connections along the
path to the server. Once the entire virtual connection has been established, the target
returns a FIREWALL_PATH_RESP service context in a return NegotiateSession
message, and the client and server can communicate using GIOP. The IOR entries,
service context entries, and NegotiateSession message will be outlined in more detail
in the following sections.
1-6 CORBA Firewall Traversal

1.5.2 FWSpec Structure

Each host along the path from the client to the target server can be identified as a
collection of endpoints. An endpoint is an address by which a client can access the
services provided by that host. That collection of endpoints is defined in a FWSpec
structure, outlined below.

module CSIIOP {
// A TAG_IIOP_SEC_TRANS component contains a struct
// IIOP_SEC_TRANS that gives addressing information for IIOP services
// on a host
const IOP::ComponentId TAG_IIOP_SEC_TRANS = 43;
struct IIOP_SEC_TRANS {

TransportAddressList addresses;
};

};

module Firewall {

struct FWSpec {
boolean is_intelligent;
IOP::TaggedComponentSeq endpoints;

};
typedef sequence<FWSpec> FWPath;

// A TAG_PASSTHRU_TRANS component contains a struct
// CSIIOP::IIOP_SEC_TRANS indicating the addressing information for
// PASSTHRU services
const IOP::ComponentId TAG_PASSTHRU_TRANS = 41;

};

isIntelligent

Indicates whether or not this host is capable of processing the connection setup
message. The isIntelligent attribute must be true for application proxy
firewalls and servers, and it must be false for transport level firewalls. The one
exception to this rule is when an application proxy is behaving like a transport level
firewall; i.e. there is a static mapping from an incoming address/port pair to an
outgoing address/port pair and the firewall does not examine the connection setup
message.

endpoints

The addresses and ports that this host can be contacted on. This field can contain any
tagged components that specify address, port, and optional “type of service”
information. At this point, this field can contain any combination of
TAG_TLS_SEC_TRANS, TAG_SECIOP_SEC_TRANS, or
TAG_CSI_SEC_MECH_LIST components, or one of two added components
CORBA Firewall Traversal 1-7

TAG_PASSTHRU_TRANS and TAG_IIOP_SEC_TRANS. These components
describe the services that are provided by the firewall or server. Table 1-1 illustrates
what each component indicates in a TAG_FIREWALL_PATH component.

The new TAG_IIOP_SEC_TRANS component simply provides a way of specifying
addresses and ports for plaintext IIOP service. The new TAG_PASSTHRU_TRANS
component can only be used for FWSpec entries describing firewalls, and it describes
a service endpoint whereby a firewall will not inspect the data going through the
firewall. This service allows clients and servers to connect to each other directly using
a secure transport, so that the security association is setup from client to server, not
client to firewall and firewall to server.

1.5.3 Firewall Tagged Component

An IOR contains information about the target address of an Object, such as an
address/port pair. In order to traverse a firewall, an IOR must also contain path
information about the inbound firewalls. In a configuration where there are multiple

Table 1-1 Use of Tagged Components in the FWSpec Structure

Component Type Service Provided by host

TAG_IIOP_SEC_TRANS The protocol used will be plain IIOP that will be
inspected by the firewall as it passes through

TAG_TLS_SEC_TRANS The firewall or server will act as a TLS endpoint
for the client. The firewall will inspect the IIOP
traffic as it passes through.

TAG_SECIOP_SEC_TRANS The firewall or server will act as a SecIOP
endpoint. The firewall will inspect the IIOP
traffic as it passes through

TAG_PASSTHRU_TRANS The firewall will act as a tunnel, allowing the
client to directly connect to the server without
firewall intervention. This is useful if the client
and server need to establish a transport security
association. Only a firewall FWSpec can contain
this component

TAG_CSI_SEC_MECH_LIST The firewall or server understands CSIv2 and
can handle the CSIv2 protocol. The actual
transport used is specified in the
TAG_CSI_SEC_MECH_LIST and can be one of
TAG_IIOP_SEC_TRANS,
TAG_TLS_SEC_TRANS, or
TAG_SECIOP_SEC_TRANS. In all cases, the
firewall or server will act as the secure transport
endpoint and the firewall will inspect the
protocol as it passes through.
1-8 CORBA Firewall Traversal

enclaves (firewalls within firewalls) it is necessary to carry access information for all
inbound firewalls. To include firewall information in an IOR, the following tagged
component is defined.

module Firewall {

// The component with ID TAG_FIREWALL_PATH contains a
// FWPath
const IOP::ComponentId TAG_FIREWALL_PATH = 42;//OMG Allocated

};

The IOR Component with ID TAG_FIREWALL_PATH contains a FirewallPath
structure which is a sequence of FWSpecs. This FirewallPath contains the FWSpecs
for all of the firewalls along the path to the server, including the FWSpec of the server.
These FWSpecs must be in order from the outermost inbound firewall to the server.
The TAG_FIREWALL_PATH IOR component can only be placed in IORs with GIOP
version 1.3 or higher because the firewall traversal algorithm relies on a GIOP
message introduced in GIOP 1.3.

Since transport-level firewalls use a static mapping from external host/port pairs to
internal host/port pairs, it is possible in some firewall configurations to eliminate the
FWSpecs of transport-level firewalls from the FirewallPath. For example, take the
case where a server is located behind a transport-level firewall. In this case the
FirewallPath could contain one entry, the FWSpec of the server, which contains the
address and port of the firewall. However, this is only possible in the case where there
are no clients in the same enclave as the server. If clients did share the enclave with
the server, they would not have sufficient information to contact the server. Therefore,
this optimization should only be performed during the configuration of the firewall
information on the server, and it is dependent upon the specific application and the
firewall configuration.

The TAG_FIREWALL_PATH component may appear multiple times within a profile.
Each individual component specifies a separate path to the target server. For example,
a network may have multiple access points through multiple firewalls. If this is the
case, then multiple firewall components could be specified to allow clients to access
the server through either firewall.

1.5.4 Firewall Service Context

The FIREWALL_PATH service context must only be sent in the connection setup
request. The service context contains the ordered list of firewalls that the client chose
in order to reach the server. Each application level firewall will be able to parse this
service context to determine what the next hop in the path to the server should be. The
FIREWALL_PATH service context is defined as follows.
CORBA Firewall Traversal 1-9

module Firewall {

// The FIREWALL_PATH service context contains a FirewallPathContext
// structure
const IOP::ServiceId FIREWALL_PATH = 20; // OMG Allocated

struct FirewallPathContext {
long host_index;
FWPath path;

};
};

The FIREWALL_PATH service context contains a FirewallPathContext structure. The
host_index field is an index indicating the current point in the firewall path. The
outermost inbound firewall has index zero, and the index increases by one for each
successive FWSpec with the target server having the highest index. The path
attribute contains a list of FWSpecs, and the path is obtained from the FirewallPath
in the TAG_FIREWALL_PATH component of the IOR. The FIREWALL_PATH
service context may only be sent in a NegotiateSession message and only during the
connection setup period - see section 15.4.10.

When a client ORB needs to open a connection to an object with a
TAG_FIREWALL_PATH component in the TAG_INTERNET_IOP profile, the ORB
extracts the FirewallPath entry from the IOR and places it in the FIREWALL_PATH
service context. However, the FirewallPath structure in the IOR may contain multiple
IOP::TaggedComponents for each FWSpec. When sending the connection setup
mesage, the client ORB must choose, based upon that client’s policy, a single
component from each FWSpec to be placed in the FirewallPath structure in the service
context of the message. If the FirewallPath incorrectly contains more than one
endpoint for any FWSpec, a firewall or target server must use the first endpoint in the
endpoints sequence when making connection decisions.

There are two reasons why it is important that a FWSpec only contain a single
IOP::TaggedComponent. First, a firewall or server must be able to determine whether
the preceding firewall or client intends to connect using a secure transport, create a
PASSTHRU connection, or neither. If multiple endpoints are available, the firewall or
server may not be able to determine the preceding host’s intention. Second, using a
single endpoint allows the firewall to make a deterministic decision about what
endpoint to connect to on the subsequent host in the FirewallPath. How the client
ORB determines which endpoint to choose is described in section 1.5.5.

The host_index attribute is used by application firewalls and servers to locate their
entry in the FirewallPath in order to determine the transport connection type and
address of the next host in the path. The host_index attribute always indicates the
next “intelligent” host on the path to the server, as indicated by the isIntelligent
element of the FWSpec. Thus, when an application firewall or server receives the
FIREWALL_PATH service context, the FWSpec indicated by host_index indicates
that firewall’s or server’s FWSpec.
1-10 CORBA Firewall Traversal

The client ORB can use any strategy to choose which firewall to send the connection
setup message to. For example, a client ORB might first attempt to invoke directly on
the server, and if that fails, attempt to successively open a connection to the firewalls
in the FirewallPath until a successful connection is established. Another strategy
might be to always first open a connection to the outermost inbound firewall. No
particular strategy will work for all network configurations. The policy for making
this decision is discussed in section 1.5.5, “Path Insertion Policy”.

After the client ORB has determined which firewall to send the connection setup
message to, it must set the host_index field to be equal to the index of the FWSpec
that is the FWSpec of the next “intelligent” host on the path to the server. If the
FWSpec of the firewall that the client ORB chose to connect to has isIntelligent
set to true, then host_index is the index of that FWSpec. Otherwise the ORB
must find the first FWSpec in the FirewallPath following the chosen firewall that has
isIntelligent set to true, and host_index will be the index of that FWSpec.
Note that the FWSpec of the target server will always have isIntelligent set to
true, so there will always be a valid value for host_index. Similarly, as each
application proxy processes the connection setup request message, it must increment
the host_index to indicate the next FWSpec in the path that has isIntelligent
set to true. This process ensures that the host_index always points to an
“intelligent” host.

It should be noted that a client may maliciously create endpoints for a given FWSpec
when building the FIREWALL_PATH service context. For that reason, firewall
implementations should verify that the firewall policy allows a connection to the
endpoint specified in the service context before opening a connection. This suggests
that firewalls might provide a means of configuring policy such that certain protocol
types (PASSTHRU,TLS, etc.) are allowed to only specific servers.

Once the connection has been established, the last intelligent firewall in the
FirewallPath sends a FIREWALL_PATH_RESP service context in another
NegotiateSession message (see section 1.5.7, “Inbound Firewall Traversal”). The
contents of the FIREWALL_PATH_RESP service context are described below.

module Firewall {
// The FIREWALL_PATH_RESP service context contains a
// FirewallPathRespContext
const IOP::ServiceId FIREWALL_PATH_RESP = 21; // OMG Allocated

typedef unsigned short FWReplyStatusType;
const FWReplyStatusType NO_EXCEPTION = 0;
const FWReplyStatusType SYSTEM_EXCEPTION = 1;
typedef sequence<octet> FWReplyBody;
};
FirewallPathRespContext {

boolean connection_complete;
FWReplyStatusType status;
FWReplyBody body;

};
CORBA Firewall Traversal 1-11

In the normal, non-exception case, the FirewallPathRespContext status field is
NO_EXCEPTION and the body field is empty. If a firewall is unable to setup a
connection, that firewall constructs an appropriate system exception for the failure, sets
the status field to SYSTEM_EXCEPTION, and returns that exception in the body field
of the FirewallPathRespContext, CDR marshaled as a sequence of octets.

If the FIREWALL_PATH_RESP context completely sets up the connection, the
connection_complete field will contain true. If more processing is needed to complete
the connection to the server, the connection_complete field will contain false.

1.5.5 ORB Policies

Path Selection Policy

When building the FIREWALL_PATH service context, the client ORB must be able to
select endpoints from each of the FWSpec’s in the FirewallPath element of the
TAG_FIREWALL_PATH component. As mentioned earlier, each FWSpec in the
service context must have only one endpoint in order for the firewalls and server to
determine what type of connection is being established. The client ORB selects
endpoints based on the PathSelectionPolicy.

The PathSelectionPolicy is an ORB level policy. This policy may be overridden at the
ORB level, or it can be overridden for specific objects that the ORB intends to invoke
upon. The PathSelectionPolicy contains a set of FeatureDirectives for both the
gateway and the target server. The gateway refers to the outermost-inbound server-
side application firewall. These feature directives instruct the client ORB on how to
choose a path to the target server based on features like target authentication and
confidentiality. The client ORB must choose an endpoint for each firewall and server
in the TAG_FIREWALL_COMPONENT such that the PathSelectionPolicy is satisfied.

The client application can specify a policy for target_authentication, confidentiality,
and integrity for both the gateway and the server. Table 1-2 describes what the
FeatureDirective values mean for each of these variables. Not all combinations of
values are valid. A policy that contains two contradictory policy values is an invalid
policy. The client ORB satisfies this policy by choosing endpoints from the FWSpec
of each firewall and server that meet the policy requirements.
1-12 CORBA Firewall Traversal

module Firewall {
// Feature Directive
// A Feature Directive is a general directive used in policy that
// stipulates the use of a particular feature. Such examples include,
// confidentiality, integrity, authentication, etc.
typedef long FeatureDirective;

// The FD_DoNotUse FeatureDirective means definitely do not to use
// the feature.
const FeatureDirective FD_DoNotUse = -2;

// The FD_DoNotUseIfPossible FeatureDirective means do not to use
// the feature if it is possible.
const FeatureDirective FD_DoNotUseIfPossible = -1;

// The FD_UseDefault FeatureDirective means to use or not to use
// the feature depending on defaults.
const FeatureDirective FD_UseDefault = 0;

// The FD_DoNotUseIfPossible FeatureDirective means do not to use
// the feature if it is possible.
const FeatureDirective FD_UseIfPossible = 1;

// The FD_DoNotUse FeatureDirective means definitely use
// the feature.
const FeatureDirective FD_Use = 2;

struct FeatureDirectiveSet {
FeatureDirective target_authentication;
FeatureDirective confidentiality;
FeatureDirective integrity;

};

const ::CORBA::PolicyType PATH_SELECTION_POLICY_TYPE = 61;
local interface PathSelectionPolicy : CORBA::Policy {

readonly attribute FeatureDirectiveSet target_server;
readonly attribute FeatureDirectiveSet gateway;

};
};
CORBA Firewall Traversal 1-13

Path Insertion Policy

The server specifies a list of FWSpecs in the TAG_FIREWALL_PATH component of
the IOR. Depending on network topologies and relative locations of clients and
servers, different clients may take different paths to reach the server. For instance, a
client located in the same enclave as the server might connect directly to the server
whereas a client on the internet will connect to the outermost inbound server-side
firewall. Therefore, a client must have a policy about which FWSpec in the list of
FWSpecs to attempt to connect to first. The PathInsertionPolicy is used for this
purpose. The PathInsertionPolicy is a client-side policy that is defined as an ORB-
level policy that can be overriden for specific objects.

module Firewall {

typedef short PathInsertionPolicyValue;
const PathInsertionPolicyValue OUTSIDE_IN = 0;
const PathInsertionPolicyValue INSIDE_OUT = 1;
const PathInsertionPolicyValue NO_FIREWALL = 2;

// Allocated by OMG
const CORBA::PolicyType PATH_INSERTION_POLICY_TYPE = 62;

interface PathInsertionPolicy : CORBA::Policy {
readonly attribute PathInsertionPolicyValue value;

};
};

Table 1-2 Explanation of FeadtureDirectives for PathSelectionPolicy

Policy Variable Explanation

target_authentication Whether or not to authenticate this host. For example, if the
gateway FeatureSet contains a FeatureDirective of
FD_UseIfPossible, the client ORB should attempt to find a
path that would cause the secure transport endpoint to be the
gateway, enabling the client ORB to authenticate the
gateway

confidentiality Whether or not the client requires confidentiality to this
host. For example, if the target_server FeatureSet contains a
FeatureDirective of FD_Use, then the client ORB must find
a path that is encrypted all the way to the server. However,
trusted intermediate firewalls could act as secure transport
endpoints along the path, depending on the value of
target_authentication for both target_server and gateway.

integrity Whether or not the client requires integrity to this host.
This field has the same policy semantics as the
confidentiality field.
1-14 CORBA Firewall Traversal

A policy value of OUTSIDE_IN indicates that if the client detects a
TAG_FIREWALL_PATH component, the client should build the FIREWALL_PATH
service context beginning with the FWSpec of the outermost-inbound firewall (this
first FWSpec). If the client fails to connect to the server using that
FIREWALL_PATH, the client should attempt to build a new FIREWALL_PATH
context beginning with the next FWSpec in the list. The client should attempt to
contact the server using sequentially increasing FWSpecs from the FWSpec list until a
successful connection is established or all FWSpecs have been tried.

A policy value of INSIDE_OUT indicates that if the client detects a
TAG_FIREWALL_PATH component, the client should build the FIREWALL_PATH
service context beginning with just the FWSpec of the server (the last FWSpec). If the
client fails to connect to the server using that FIREWALL_PATH, the client should
attempt to build a new FIREWALL_PATH context beginning with the previous
FWSpec in the list (this includes the FWSpec of the server). The client should attempt
to contact the server using sequentially decreasing FWSpecs from the FWSpec list
until a successful connection is established or all FWSpecs have been tried.

A policy value of NO_FIREWALL indicates the the client should ignore the
TAG_FIREWALL_PATH component and only attempt to directly contact the server
using the normal address information in the IIOP component.

1.5.6 Firewall and ORB Configuration

In order for a server to place information about the firewall path into an object’s IOR,
the server must know about the topology of the network. How that information is
supplied to the server ORB is implementation dependent. Several solutions might
include using a static configuration file or dynamically discovering the firewall
topology from a configuration agent. Similarly, the firewall policy regarding which
hosts are accessible from outside the enclave is implementation dependent.

1.5.7 Firewall Traversal Algorithm

A server ORB can determine if an object is to be accessed through a firewall via
configuration information. When a server ORB determines that an object must be
accessed through a firewall, the server ORB places a TAG_FIREWALL_PATH
component into the IIOP profile of the IOR that contains the firewall path information
as described earlier. In addition, the ORB must place some address and port number
into the IIOP profile itself as described in section 15.7.2 of the CORBA 2.4.1
specification. The address provided in the IIOP profile shall be the address (or
preferably DNS name) and port of the FWSpec of the server.

The client ORB determines that an object is accessed through a firewall by the
presence of the TAG_FIREWALL_PATH component in the IIOP profile. The client
ORB then prepares to send the connection setup message. First the client must prepare
a FIREWALL_PATH service context, extracting the FirewallPath information from the
IOR as described earlier. Recall that the connection setup message will only be sent if
CORBA Firewall Traversal 1-15

there is an “intelligent” firewall on the path to the server. This includes any outbound
firewall proxies as described in the next section. Next the client must traverse any
outbound firewalls as described in the next section.

Outbound Firewall Traversal

Outbound firewall traversal is typically simpler than inbound traversal due to less
restrictive policies for outbound connections. In some cases, it may not be necessary
to take any additional steps for outbound firewall traversal than to just open a TCP
connection to the outermost inbound firewall on the server side. However, there are
cases in which a firewall security policy will not allow arbitrary outbound connections,
so there must be a means to handle those situations.

The approach used for outbound IIOP connections is the same as the approach for
other Internet protocols like HTTP or FTP. Namely, the client must be configured with
an outbound IIOP proxy to which it can send its connection requests. A client ORB
must determine whether or not the client-side proxy is needed when making a
connection, and if so, the client will open a connection to the proxy rather than the
outermost inbound server-side firewall. How a client determines whether or not an
outbound proxy is needed is an implementation issue, and other Internet protocol
implementations can be used as a model for this implementation. Likewise, how the
client ORB is configured with outbound proxy information is an implementation issue.

The client ORB shall be configured with information equivalent to a FWSpec for the
outbound proxy. When choosing a path to the server, the outbound proxy should be
considered in addition to the inbound server-side firewalls. This means that the
PathSelectionPolicy must also be satisfied in choosing a path through an outbound
proxy, and that the FWSpec for the outbound proxy must be placed as the first
FWSpec in the FIREWALL_PATH context.

If an outbound proxy is within a nested set of enclaves, that proxy could also be
configured with an outbound proxy. Since the proxy can determine the target of the
connection setup request using the FIREWALL_PATH context, the proxy makes the
same decision as the client did in the previous step; i.e. determine if the outermost
inbound firewall can be contacted directly. If not, forward the connection setup
request to the next outbound proxy. When an outbound proxy selects a FWSpec for
the next outbound proxy, that proxy must choose a PASSTHRU endpoint for secure
transports or an IIOP or PASSTHRU endpoint for the plain IIOP transport. The reason
for this is that a client is typically only configured with one outbound proxy, and so it
is unable to choose a path through all of the outbound firewalls. Because successive
proxies don’t know the PathSelectionPolicy of the client, they are unable to determine
the correct endpoint type. The choice of a PASSTHRU endpoint will not affect any
choices that the client made regarding whether the client intended to connect to the
gateway or to the server. If the client was configured with a sequence of outbound
proxies, the client can place the list of outbound proxies in the FIREWALL_PATH
context before the FWSpecs of the inbound firewalls, in which case the use of IIOP or
PASSTHRU endpoint types is not necessary because the client ORB predetermines the
outbound path.
1-16 CORBA Firewall Traversal

Inbound Firewall Traversal

As each proxy firewall receives the NegotiateSession message with the
FIREWALL_PATH context, it is able to locate its own entry in the firewall path using
the host_index field from the service context. It can also determine the type of
connection that needs to be made to subsequent firewalls or the server using that same
information. However, before opening any connections, the firewall should check its
policy to verify that the desired connection is allowed. The following pseudo code
describes in detail the connection setup algorithm for both client ORBs and
“intelligent” application proxy firewalls as they parse the FIREWALL_PATH context:

if my service type is TAG_PASSTHRU_TRANS (false for client ORBs)
verify that a connection is allowed to the endpoint in the next FWSpec entry
open a TCP/IP connection to the endpoint in the next FWSpec entry
if the next FWSpec with isIntelligent=true has service type TAG_PASSTHRU_TRANS

update host_index in the FIREWALL_PATH context to indicate that FWSpec entry
forward the updated FIREWALL_PATH context
wait for a FIREWALL_PATH_RESP message, take note of its type, and forward it
if the FIREWALL_PATH_RESP contained an error

close the connection
else

send back a FIREWALL_PATH_RESP context in a NegotiateSession message with
status=NO_EXCEPTION and connection_complete=false

else
if the next FWSpec with isIntelligent=true is the last (i.e. if it is the server)

verify that a connection is allowed to the endpoint in the next FWSpec entry
open a TCP/IP connection, or a secure connection if the next endpoint is secure
send back a FIREWALL_PATH_RESP context in a NegotiateSession message with

status=NO_EXCEPTION and connection_complete=true (only firewalls perform this step)
else

if the next FWSpec with isIntelligent=true has service type TAG_PASSTHRU_TRANS
update host_index in the FIREWALL_PATH context to reference that FWSpec
verify that a connection is allowed to the endpoint in the next FWSpec entry
open a TCP/IP connection to that endpoint
forward the updated FIREWALL_PATH context
wait for a FIREWALL_PATH_RESP message
if the FIREWALL_PATH_RESP message contains an error

forward the FIREWALL_PATH_RESP message (firewalls only)
close the connection

verify that the connection_complete field of the FIREWALL_PATH_RESP is false
if the endpoint following the sequence of TAG_PASSTHRU_TRANS endpoints is a secure

endpoint
complete the security handshake with that host

if the endpoint following the sequence of TAG_PASSTHRU_TRANS endpoints is in the last
FWSpec (i.e. it is the server)
send back a FIREWALL_PATH_RESP message with status=NO_EXCEPTION and

connection_complete=true (only firewalls perform this step)
else

update host_index field in the FIREWALL_PATH context to indicate the next FWSpec
CORBA Firewall Traversal 1-17

with isIntelligent=true that doesn’t have type TAG_PASSTHRU_TRANS
forward the updated FIREWALL_PATH context
wait for the FIREWALL_PATH_RESP context
verify that the FIREWALL_PATH_RESP context has connection_complete=true
forward the FIREWALL_PATH_RESP context (firewalls only)
if the FIREWALL_PATH_RESP context contains an error

close the connection
else

verify that a connection is allowed to the endpoint in the next FWSpec entry
open a TCP/IP connection, or a secure connection if the next endpoint is secure
update the host_index field of the FIREWALL_PATH context
forward the FIREWALL_PATH context
wait for the FIREWALL_PATH_RESP context
verify that the FIREWALL_PATH_RESP context has connection_complete=true
forward the FIREWALL_PATH_RESP context (firewalls only)
if the FIREWALL_PATH_RESP context contains an error

close the connection
begin GIOP communication

1.5.8 Callback Invocations

Though this specification provides a solution to the routing and location transparency
issues for a variety of network topologies including those employing NAT, policy
issues still exist that make it impossible for firewalls to be completely transparent to
CORBA applications. Specifically, callbacks present a unique problem. Firewalls are
usually configured to allow limited access to a limited set of well-known server
addresses. Most hosts cannot be accessed from outside the enclave. CORBA clients
may sometimes also act as servers, requiring that invocations from hosts outside the
enclave be allowed through the firewall. There are several possibilities for dealing
with this problem.

First, if a CORBA client is not behind a firewall, then the server can make callback
invocations without restrictions other than the server-side outbound connection policy.
This is the simplest case. A related case is if the client is protected by a firewall, but
the firewall policy allows inbound connections to that client. In this case, the client
and server roles are reversed for the callback invocations, and the mechanisms
previously outlined in this specification can be used for firewall traversal.

Second, if a CORBA client is behind a firewall then the server can make callback
invocations on the client using bi-directional GIOP (see section 15.4.10). Bi-
directional GIOP allows a client to receive GIOP messages normally intended for a
server and vice-versa. In this case, the server simply uses the channel opened by the
client for callback invocations, and there is no need for additional algorithms.

Third, a CORBA client may be behind a firewall and a third-party might desire to
make an invocation on an object managed by the client. Third-party in this case
indicates that the client has not initiated a connection to that host, instead, that host
received an IOR for a client object from some other host. Firewall policy might not
1-18 CORBA Firewall Traversal

permit inbound connections to that client, and a bi-directional GIOP connection is not
possible because the client does not have a connection open to the third-party host. In
this case it is not possible for a callback invocation to occur. Keeping this in mind,
application developers must write their applications such that a client is given a
reference to the third-party host instead. Then the client can contact that host, and
callbacks can occur via bi-directional GIOP. This is the normal application
development model for Internet applications, but not necessarily for CORBA
applications. CORBA applications will need to be carefully designed in order to avoid
third-party callbacks through firewalls.

1.5.9 Implications of Secure Transports

Identity Delegation

There are a number of additional problems with CORBA firewall traversal when
secure transport connections are desired. First, secure transports establish a security
association between the hosts that act as endpoints for the connection. Some secure
transports, in particular TLS, do not provide any means for delegation of authorization
or identity. It may be desirable to have a firewall act as an endpoint for a secure
connection in order to inspect the protocol for errors or to provide access control to the
enclave. However, if a firewall is an endpoint for a secure connection, the identity
provided to the client or server will be that of the firewall, and not of the client or
server as would be desired.

In order to work around this problem, a new CSIv2 IdentityToken type,
ITTCompoundToken, is introduced (See section 14.2.5 of CORBA Core). The
purpose of this token is for the firewall to be able to provide the server with the
information that the client provided to the firewall. The definition of that token is:

module CSI {
typedef sequence<CSI::IdentityToken> IdentityTokenList;
struct CompoundIdentityToken {

CSI::IdentityToken asserted_identity;
CSI::IdentityToken authenticated_transport_identity;
CSI::IdentityToken authenticator_identity
IdentityTokenList authentication_trail;

};

const CSI::IdentityTokenType ITTCompoundToken = xx;

// This structure goes in the ‘id’ value of IdentityToken. An
// IdentityExtensionToken with the_type=ITTCompoundToken contains a
// CompoundIdentityToken
struct IdentityExtensionToken {

CSI::IdentityTokenType the_type;
CSI::IdentityExtension id;

};
};
CORBA Firewall Traversal 1-19

The CompoundIdentityToken enables the firewall to pass on to the server the
authentication information that it collected. The fields of the CompoundIdentityToken
are defined as follows:

asserted_identity the identity that the client presented in the identity_token field of
the CSIv2 EstablishContext message that was intercepted by the firewall.

authenticated_transport_identity the identity that was authenticated by the firewall
through the secure transport.

authenticator_identity the identity that the client presented in the
client_authentication_token field of the CSIv2 EstablishContext message that was
intercepted by the firewall. The firewall only provides a value in this field other than
ITTAbsent if the firewall authenticated the client using the
client_authentication_token.

authentication_trail this is a field that provides a place for a firewall or a chain of
firewalls to place their own identities to give the server additional information about
what firewalls the invocation has passed through.

The fields in the CompoundIdentityToken shall not contain an IdentityTokenType of
ITTCompoundToken.

If the receiver of a CompoundIdentityToken trusts the sender of the token, then the
receiver can use that information in making a trust decision. For instance, if a server
receives a CompoundIdentityToken from a trusted firewall, the resulting invocation
principal would be the identity in the asserted_identity field, given that the server
trusts the identity provided in the authenticated_transport_identity field or the
authenticator_identity field to make invocations as the asserted_identity. The
invocation principal and trust determinations shall be the same as presented in the
CSIv2 specification, as if the server had authenticated the identities in the
authenticated_transport_identity and/or authenticator_identity fields. But the server
shall only accept a CompoundIdentityToken if the server’s security policy allows the
firewall identity to present a CompoundIdentityToken.

If a firewall detects a CompoundIdentityToken in the EstablishContext message, but
the firewall policy does not allow the client to use a CompoundIdentityToken, the
firewall shall generate a NO_PERMISSION exception to send to the client. The
firewall shall not forward that message to the server. If the server detects a
CompoundIdentityToken in an EstablishContext message that did not come from a
trusted source, the server shall generate a NO_PERMISSION exception to send to the
client. The server shall not proceed to execute the object invocation. It is important
that CompoundIdentityTokens are only accepted from authenticated sources that are
trusted to use them because the server has no proof that the sender actually
authenticated the client information in the CompoundIdentityToken.
1-20 CORBA Firewall Traversal

The CompoundIdentityToken can be used in several ways. First, when a client sends
EstablishContext messages to the server, but the secure transport connection is with the
firewall, the firewall can introduce the CompoundIdentityToken into the
EstablishContext message.

If the EstablishContext message from the client contains an identity_token, then the
asserted_identity field of the CompoundIdentityToken shall be set to that value.
Otherwise the value of asserted_identity shall be ITTAbsent.

If the EstablishContext message from the client contains an authentication_token, the
firewall has several options. If the server does not support the type of token in
authentication_token, the firewall must either authenticate the client’s token and place
the value of the authenticated identity in the authenticator_identity field and remove
the authentication_token from the EstablishContext message, or the firewall must
generate a NO_PERMISSION exception to return to the client. If the server does
support the type of token in the authentication_token, then the firewall can either
authenticate the client’s token and place the value of the authenticated identity in the
authenticator_identity field, or leave the authentication_token in the EstablishContext
message for the server. If the firewall does not support that type of
authentication_token, the firewall could leave the authentication token in the message
for the server to verify. Whatever decision the firewall makes in this case must be
consistent with the server’s requirements for an authentication_token. If the firewall
does not set the value of the authenticator_identity field, then the value of that field
shall be ITTAbsent.

If the firewall authenticated the client’s identity through a secure transport, the firewall
shall place the value of that identity in the authenticated_transport_identity field.
Otherwise the value of the authenticated_transport_identity field shall be ITTAbsent.

Finally, the firewall may optionally place its own identity information into the
authentication_trail field. The presence of a firewall’s identity in the
authentication_trail field is dependant upon the configuration of that firewall. Once
the CompoundIdentityToken has been constructed, the firewall replaces the
identity_token value in the EstablishContext message with the
CompoundIdentityToken and forwards the message on to the server. However, if the
firewall’s authentication of either the client’s transport identity or authentication_token
identity fails, the firewall shall not forward the message to the server, but rather return
a NO_PERMISSION exception.

A second way in which the CompoundIdentityToken can be used is if the firewall
receives an EstablishContext message that already contains a CompoundIdentityToken.
If the firewall trusts the sender of the CompoundIdentityToken, the firewall may
optionally add its identity to the authentication_trail field and forward the message on
to the server. If the firewall does not trust the sender to provide a
CompoundIdentityToken, then the firewall shall not forward the message to the server.
Instead the firewall shall send a NO_PERMISSION exception to the client.
CORBA Firewall Traversal 1-21

A third way in which the CompoundIdentityToken can be used is if the firewall
receives an invocation from a client over an authenticated connection, but the client
did not provide an EstablishContext message for that invocation. In that case, if the
server supports CSIv2 CompoundIdentityTokens, the firewall may optionally establish
a CSIv2 security association with the server by adding an EstablishContext message to
the GIOP Request message. The identity_token in the EstablishContext message shall
be a CompoundIdentityToken, constructed as outlined earlier in this section, with the
client’s authenticated transport identity in the authenticated_transport_identity field.
The firewall shall strip the subsequent CompleteEstablishContext or ContextError
messages from the replies before forwarding them to the client.

1.6 Firewall Traversal Use Cases
The following example serves to illustrate most of the important features of this
specification. In particular, the example shows how the traversal algorithm applies to
a specific firewall configuration. The example is shown in Figure 1-1.

Figure 1-1 Firewall configuration for use case.

For this scenario, the IOR of an object on the server would have an IIOP profile shown
in Figure 1-2. This IOR contains a TAG_TLS_SEC_TRANS component that could be
used by the internal client to invoke on the server. In addition, the IOR contains a
TAG_FIREWALL_PATH component that allows external clients to traverse the
firewalls in order to invoke on the server.

External Client A N/A Outbound proxy at B:683
Ext. Proxy FW B 683
Public TCP FW V 684 Redirect to W:684
Corp. Proxy FW W 684
Div. TCP FW X 683/684 Redirect to Z:683/684
Internal Client Y N/A
Server Z 683/684

Configuration:

TCP
Firewall

(V)

TCP
Firewall

(X)

Proxy
Firewall

(W)

Server
(Z)

Private Corporate Enclave

Division Enclave

Internet
Proxy

Firewall
(B)

Client
(A)

Internet Servers
(DNS,HTTP,etc.)

Public Corporate Enclave

Host Addr. Port Other Client
(Y)
1-22 CORBA Firewall Traversal

1: Profile ID: 0 (TAG_INTERNET_IOP)
2: Version: 1.3
3: Host: Z
4: Port: 683
5: Object Key: “my_object”
6: # of Components: 2
7: Component 0:
8: Component ID: 20 (TAG_TLS_SEC_TRANS)
9: Target Supports: 0x7E
10: Target Requires: 0x7E
11: Port: 684
12: Component 1:
13: Component ID: xx (TAG_FIREWALL_PATH)
14: # of FWSpecs: 3
15: FWSpec 0: //Refers to Corp. Proxy firewall
16: Intelligent: True // using the public TCP firewall’s
17: # of Endpoints: 2 // address
18: Endpoint 0:
19: ComponentId: (TAG_CSI_SEC_MECH_LIST)
20: target_requires: Confidentiality, Integrity,
21: EstablishTrustinTarget, EstablishTrustInClient,
22: IdentityAssertion
23: transport_mech: (TAG_TLS_SEC_TRANS)
24: target_supports: same as line 20
25: target_requires: same as line 20
26: addresses: V:684
27: as_context_mech empty
28: sas_context_mechempty
29: Endpoint 1:
30: ComponentId: (TAG_PASSTHRU_TRANS)
31: addresses: V:684
32: FWSpec 1: //Refers to the division TCP
33: Intelligent: False // firewall. Options for both TLS
34: # of Endpoints: 2
35: Endpoint 0:
36: ComponentId: (TAG_IIOP_SEC_TRANS)
37: addresses: X:683
38: Endpoint1:
39: ComponentId: (TAG_PASSTHRU_TRANS)
40: addresses: X:684
41: FWSpec 2: //Refers to the server endpoints.
42: Intelligent: True // One each for IIOP/TLS and IIOP
43: # of Endpoints 2:
44: Endpoint 0:
45: ComponentId: (TAG_IIOP_SEC_TRANS)
46: addresses: Z:683
47: Endpoint 1:
48: ComponentId: (TAG_CSI_SEC_MECH_LIST)
49: transport_mech: (TAG_TLS_SEC_TRANS)
50: target_requires: same as line 20
51: target_supports: same as line 20
CORBA Firewall Traversal 1-23

51: addresses: Z:684
52: as_context_mech: empty
53: sas_context_mech: empty

Figure 1-2 IIOP profile of an object on the server containing firewall information

This firewall component contains three FWSpec’s but there are actually four hosts,
three firewalls and the server, that should be represented in this firewall component.
The reason for this is that FWSpec 0 (lines 15-31) makes use of an optional
optimization. Since the public TCP firewall is configured to automatically redirect
connections to the proxy firewall, FWSpec 0 actually represents the proxy firewall but
the address in the FWSpec is the address of the public TCP firewall (line26). This
optimization is possible in this case because there are no clients in the public corporate
enclave that will make invocations on the server. If there were such clients, this
particular firewall component would not have enough information for those clients to
make an invocation on the server. Notice also that only authenticated TLS connections
or PASSTHRU connections are allowed to the first firewall. This was configured by
the administrator so that only secure connections are allowed from the internet.

FWSpec 1 (lines 32-40) represents the division TCP firewall. Since this node is a TCP
firewall, the isIntelligent field is set to FALSE (line 33). Notice that in this FWSpec
there are endpoints available for both IIOP and IIOP/TLS. The administrator
configured this firewall so that internal corporate users could access the server without
using TLS. Instead of placing the IIOP endpoints for FWSpec 1 and FWSpec 2 in the
same firewall component as the TLS endpoints, the administrator could have put the
IIOP endpoints in a separate firewall component altogether. This choice depends on
the specific application. In this example, one use case will make use of both the TLS
and non-TLS endpoints, so the administrator chose to place all of the endpoints in a
single firewall component.

FWSpec 2 (lines 41-53) represents the server. A server will always have the
isIntelligent field set to TRUE (line 42). This FWSpec also contains both an IIOP and
an TLS/IIOP endpoint. Unlike in FWSpec 0, FWSpec’s 1 and 2 actually contain the
address of the division TCP firewall and the server respectively. The reason an
optimization was not used in this case is that there is a client in the server’s enclave
that will also make invocations on the server. If the previously mentioned optimization
were performed then the client may not have enough information to invoke on the
server. In this case, since the client is in the same enclave as the server, the client
could also use the information contained in the IIOP profile itself since the server
FWSpec information must be the information provided in the IIOP profile. However,
this example illustrates how the FWSpec optimization may cause the server to be
unavailable to some clients.

The following use cases demonstrate the algorithm for choosing endpoints and opening
a connection to the server.
1-24 CORBA Firewall Traversal

1.6.1 Secure Connection to Gateway

Once the external client has received the IOR it must choose the endpoint from each
FWSpec that it will use to contact the server, based on its PathSelectionPolicy. For
this use case, the client has a PathSelectionPolicy of:

target_server: target_authentication=FD_DoNotUseIfPossible,
confidentiality=FD_Default, integrity=FD_Default

gateway: target_authentication=FD_Use, confidentiality=FD_Use, integrity=FD_Use

This policy indicates that the client must establish a secure connection to the gateway
in order to authenticate the gateway and create a secure channel to the gateway. So
based on that policy, the client ORB selects appropriate endpoints from the
CORBA Firewall Traversal 1-25

TAG_FIREWALL_PATH component and builds a FIREWALL_PATH service context
containing FWSpecs with those endpoints. That service context is shown in Figure
1-3.

1: Service ID: xx (FIREWALL_PATH)
2: Host Index: 0
3: # of FWSpecs: 4
4: FWSpec 0: // for the outbound proxy
5: Intelligent: True
6: # of Endpoints: 1
7: Endpoint 0:
8: ComponentId: (TAG_PASSTHRU_TRANS)
9: addresses: B:683
10: FWSpec 1:
11: Intelligent: True
12: # of Endpoints: 1
13: Endpoint 0:
14: ComponentId: (TAG_CSI_SEC_MECH_LIST)
15: target_requires: Confidentiality, Integrity,
16: EstablishTrustinTarget, EstablishTrustInClient,
17: IdentityAssertion
18: transport_mech: (TAG_TLS_SEC_TRANS)
19: target_supports: same as line 20
20: target_requires: same as line 20
21: addresses: V:684
22: as_context_mech empty
23: sas_context_mechempty
24: FWSpec 2:
25: Intelligent: False
26: # of Endpoints: 1
27: Endpoint 0:
28: ComponentId: (TAG_IIOP_SEC_TRANS)
29: addresses: X:683
30: FWSpec 3:
31: Intelligent: True
32: # of Endpoints 1:
33: Endpoint 0:
34: ComponentId: (TAG_IIOP_SEC_TRANS)
35: addresses: Z:683

Figure 1-3 FIREWALL_PATH service context for secure gateway policy

In this case the ORB chose to make a TLS connection to the application proxy (line
12) and make non-TLS connections to the server (lines 22 and 28). It would also have
been acceptable under the given policy to make an additional TLS connection from the
application proxy to the server, rather than to connect without TLS.

The client ORB is configured with an outbound proxy, so it first opens a TCP
connection to the proxy (B:683). The client ORB then sends the NegotiateSession
message with the FIREWALL_PATH service context. When the proxy receives this
request message, it notes that this is an outbound connection, and determines the type
1-26 CORBA Firewall Traversal

of connection desired and the destination address using the information in the service
context. In this case, the connection type is PASSTHRU and the destination address is
V:684. The proxy then opens a TCP connection to V:684, updates the host_index
field, and forwards the original NegotiateSession message.

Recall that V:684 is actually the external address of the outermost TCP firewall. This
connection is redirected to W:684. The proxy at that address receives the message and
begins to parse it in the same manner that the client-side proxy did. The proxy
determines that this inbound connection must be terminated as a TLS connection. It
also determines that the next hop is X:683, and that this connection has a type of IIOP
meaning that no TLS will be used. The proxy must also update the host_index field.
Since the next hop is not an intelligent device, the proxy increments the host_index
field by two to indicate the next FWSpec that has isIntelligent set to TRUE. The proxy
then opens a TCP connection to X:683. But since the proxy is the last intelligent
device other than the server, the proxy does not forward the connection setup request.
Instead it must send a NegotiateSession message with a NO_EXCEPTION
FIREWALL_PATH_RESP back to the client, indicating that the connection was
successfully established.

The reply message is subsequently forwarded back through the firewalls to the client.
At this point the connection has been established and the TLS handshakes must occur.
In this case, the client begins a TLS handshake, and the server-side proxy firewall
terminates the TLS connection. Once the security association between those two hosts
has been established, normal GIOP communication can occur. All of the firewalls
forward the messages, and the server-side firewalls that have access to the plaintext
messages can examine the messages for correctness or perform access control on the
requests if desired.

1.7 End-to-End Secure Connection
This use case is very similar to the previous case except that the client ORB has a
different PathSelectionPolicy. This example only includes the changes from the
previous example and does not give a full description of the traversal algorithm. The
PathSelectionPolicy is:

target_server: target_authentication=FD_Use, confidentiality=FD_Use,
integrity=FD_Use

gateway: target_authentication=FD_DoNotUse, confidentiality=FD_Use,
integrity=FD_Use

The service context entry selected by the client is shown in Figure 1-4.

In order to satisfy the PathSelectionPolicy, the client ORB chose a PASSTHRU
endpoint for the proxy firewall (line 14), a PASSTHRU endpoint for the division TCP
firewall (line 20), and a TLS connection to the server (line 49). Therefore, all of the
intermediate hosts will only forward the GIOP messages, and the server will terminate
the TLS connection with the client.
CORBA Firewall Traversal 1-27

The firewall traversal algorithm is identical to the previous example except that the
gateway firewall does not terminate the TLS connection because the endpoint type
specified in the service context is PASSTHRU instead of TLS. Instead the server
terminates the TLS connection.

These are just a couple examples of the many different configurations of firewalls that
can be supported. However the process for establishing a connection is very similar in
all cases.

1: Service ID: xx (FIREWALL_PATH)
2: Host Index: 0
3: # of FWSpecs: 4
4: FWSpec 0: // for the outbound proxy
5: Intelligent: True
6: # of Endpoints: 1
7: Endpoint 0:
8: ComponentId: (TAG_PASSTHRU_TRANS)
9: addresses: B:683
10: FWSpec 1:
11: Intelligent: True
12: # of Endpoints: 1
13: Endpoint 0:
14: ComponentId: (TAG_PASSTHRU_TRANS)
15: addresses: V:684
16: FWSpec2 2:
17: Intelligent: False
18: # of Endpoitns: 1
19: Endpoint 1:
20: ComponentId: (TAG_PASSTHRU_TRANS)
21: addresses: X:684
22: FWSpec 3:
23: Intelligent: True
24: # of Endpoints: 1
25: ComponentId: (TAG_CSI_SEC_MECH_LIST)
49: transport_mech: (TAG_TLS_SEC_TRANS)
50: target_requires: same as line 20
51: target_supports: same as line 20
51: addresses: Z:684
52: as_context_mech: empty
53: sas_context_mech: empty

Figure 1-4 FIREWALL_PATH service context for END_TO_END secure policy

1.8 Conformance and CORBA Changes
An ORB implementation that is compliant with this specification must implement the
data structures and algorithms presented in sections 1.5.1-1.5.7. A firewall
implementation that is compliant with this specification must implement the data
structures and algorithms presented in 1.5.1-1.5.2, 1.5.4 and 1.5.6-1.5.8. Though an
1-28 CORBA Firewall Traversal

implementation may not support secure transports, it must be able to interpret the
FIREWALL_PATH service context, regardless of the connection type, and act
accordingly. Section 1.10 is optional, as is implementation of bi-directional GIOP.
CORBA Firewall Traversal 1-29

Comment: The following paragraph raises an interesting issue. If we follow this to the letter
- since it says that the new version of GIOP is not backward compatible with the
earlier versions of GIOP, it implicitly appears to make this new GIOP version a
new “major” version of GIOP. Clearly we need to figure out a way to avoid doing
this, since creating GIOP version 2.0 in this way raises all sorts of other issues.

This document supercedes the previously adopted CORBA firewall specification. In
addition, the changes to bi-directional GIOP, specified in Chapter 15, supercede the
adopted specification for bi-directional GIOP. These specifications are not backwards-
compatible with the previous specifications and they are intended to make it possible
to create a functional protocol for the interoperation of ORBs and firewalls.

Comment: Appendix A in the adopted specification is incorporated in the draft adopted spec
as section 1.9

1.9 Consolidated IDL

1.9.1 Firewall Module

module Firewall {

struct FWSpec {
booleanis_intelligent;
IOP::TaggedComponentSeq endpoints;

};
typedef sequence<FWSpec> FWPath;

// A TAG_PASSTHRU_TRANS component contains a struct
// CSIIOP::IIOP_SEC_TRANS indicating the addressing information for
// PASSTHRU services
const IOP::ComponentId TAG_PASSTHRU_TRANS = 41;

// The component with ID TAG_FIREWALL_PATH contains a
// FWPath
const IOP::ComponentId TAG_FIREWALL_PATH = 42;//OMG Allocated

// The FIREWALL_PATH_RESP service context contains a
// FirewallPathRespContext
const IOP::ServiceId FIREWALL_PATH_RESP = 43; // OMG Allocated

typedef unsigned short FWReplyStatusType;
const FWReplyStatusType NO_EXCEPTION = 0;
const FWReplyStatusType SYSTEM_EXCEPTION = 1;
typedef sequence<octet> FWReplyBody;

struct FirewallPathRespContext {
boolean connection_complete;
FWReplyStatusType status;
1-30 CORBA Firewall Traversal

FWReplyBody body;
};

// Feature Directive
// A Feature Directive is a general directive used in policy that
// stipulates the use of a particular feature. Such examples include,
// confidentiality, integrity, authentication, etc.
typedef long FeatureDirective;

// The FD_DoNotUse FeatureDirective means definitely do not to use
// the feature.
const FeatureDirective FD_DoNotUse = -2;

// The FD_DoNotUseIfPossible FeatureDirective means do not to use
// the feature if it is possible.
const FeatureDirective FD_DoNotUseIfPossible = -1;

// The FD_UseDefault FeatureDirective means to use or not to use
// the feature depending on defaults.
const FeatureDirective FD_UseDefault = 0;

// The FD_DoNotUseIfPossible FeatureDirective means do not to use
// the feature if it is possible.
const FeatureDirective FD_UseIfPossible = 1;

// The FD_DoNotUse FeatureDirective means definitely use
// the feature.
const FeatureDirective FD_Use = 2;

struct FeatureDirectiveSet {
FeatureDirective target_authentication;
FeatureDirective confidentiality;
FeatureDirective integrity;

};

const ::CORBA::PolicyType PATH_SELECTION_POLICY_TYPE = 61;
local interface PathSelectionPolicy : CORBA::Policy {

readonly attribute FeatureDirectiveSet target_server;
readonly attribute FeatureDirectiveSet gateway;

};

typedef short PathInsertionPolicyValue;
const PathInsertionPolicyValue OUTSIDE_IN = 0;
const PathInsertionPolicyValue INSIDE_OUT = 1;
const PathInsertionPolicyValue NO_FIREWALL = 2;

// Allocated by OMG
const CORBA::PolicyType PATH_INSERTION_POLICY_TYPE = 62;

interface PathInsertionPolicy : CORBA::Policy {
readonly attribute PathInsertionPolicyValue value;
CORBA Firewall Traversal 1-31

};

};

1.9.2 Additions to CSIIOP Module

The following IDL is added to the CSIIOP module which is specified in Chapter 24 of
CORBA Core.

module CSIIOP {
// A TAG_IIOP_SEC_TRANS component contains a struct
// IIOP_SEC_TRANS that gives addressing information for IIOP services
// on a host
const IOP:ComponentId TAG_IIOP_SEC_TRANS = xx;
struct IIOP_SEC_TRANS {

TransportAddressList addresses;
};

typedef sequence<CSI::IdentityToken> IdentityTokenList;
struct CompoundIdentityToken {

CSI::IdentityToken asserted_identity;
CSI::IdentityToken authenticated_transport_identity;
CSI::IdentityToken authenticator_identity
IdentityTokenList authentication_trail;

};

const CSI::IdentityTokenType ITTCompoundToken = xx;

// This structure goes in the ‘id’ value of IdentityToken. An
// IdentityExtensionToken with the_type=ITTCompoundToken contains a
// CompoundIdentityToken
struct IdentityExtensionToken {

CSI::IdentityTokenType the_type;
IdentityExtension id;

};
};

1.9.3 Additions to CSI Module

The following IDL is added to the CSI module which is specified in Chapter 24 of
CORBA Core.

module CSI {
typedef sequence<CSI::IdentityToken> IdentityTokenList;
struct CompoundIdentityToken {

CSI::IdentityToken asserted_identity;
CSI::IdentityToken authenticated_transport_identity;
CSI::IdentityToken authenticator_identity
IdentityTokenList authentication_trail;
1-32 CORBA Firewall Traversal

};

const CSI::IdentityTokenType ITTCompoundToken = xx;

// This structure goes in the ‘id’ value of IdentityToken. An
// IdentityExtensionToken with the_type=ITTCompoundToken contains a
// CompoundIdentityToken
struct IdentityExtensionToken {

CSI::IdentityTokenType the_type;
CSI::IdentityExtension id;

};
};
CORBA Firewall Traversal 1-33

	1.1 Overview
	1.2 Firewall Principles
	1.3 Types of Firewall
	1.3.1 TCP Firewalls
	1.3.2 Application Proxy

	1.4 Rationale
	1.5 IIOP Communication Via Firewalls
	1.5.1 Firewall Traversal Overview
	1.5.2 FWSpec Structure
	isIntelligent
	endpoints

	1.5.3 Firewall Tagged Component
	1.5.4 Firewall Service Context
	1.5.5 ORB Policies
	Path Selection Policy
	Path Insertion Policy

	1.5.6 Firewall and ORB Configuration
	1.5.7 Firewall Traversal Algorithm
	Outbound Firewall Traversal
	Inbound Firewall Traversal

	1.5.8 Callback Invocations
	1.5.9 Implications of Secure Transports
	Identity Delegation

	1.6 Firewall Traversal Use Cases
	1.6.1 Secure Connection to Gateway

	1.7 End-to-End Secure Connection
	1.8 Conformance and CORBA Changes
	1.9 Consolidated IDL
	1.9.1 Firewall Module
	1.9.2 Additions to CSIIOP Module
	1.9.3 Additions to CSI Module

